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Abstract The investigation of protein folding and its ram-
ifications in biological contexts is at the heart of molecu-
lar biology. Theoretical and computational studies provide a
steadily growing contribution to the understanding of factors
driving a given polypeptide sequence into the native state.
Simplified coarse-grained protein models have proven very
useful to gain insights into the general thermodynamic and
kinetic features of the folding process. On the other hand, all-
atom simulations allow to follow, with microscopic detail, the
delicate interplay of the various chemical interactions lead-
ing to the formation of the native or intermediate states. In
this paper we will discuss different computational strategies
employed to tackle the protein folding problem, based on the
use of either coarse-grained or all-atom protein descriptions.
Finally we will discuss a recent approach that allows to extend
the reach of ordinary folding simulations by using a simpli-
fied description of protein structures and energy functional
in conjunction with all-atom molecular dynamics.

Keywords Protein folding · Molecular dynamics · Folding
mechanisms

1 Introduction

Understanding the process through which proteins fold into
their native structures lies at the heart of modern molecular
and cellular biology. One of the paradigms for the folding pro-
cess is constituted by the Anfinsenian principle which states
that the folded state of an isolated protein corresponds to the
global minimum of the system free energy at physiological
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temperature [1,2]. The existence of energetic and entropic
forces for steering the folding process was argued by Levin-
thal more than thirty years ago [3]. His conclusion stemmed
from the observation that in absence of such driving forces,
the native state would be reached only through a random
exploration of the available configurational space. Even for
peptides of a few tens of residues the time required for this
exploration would be incompatible with the time scales over
which their folding is seen to occur (of the order of milli-
seconds). Although Levinthal did not rule out the possibil-
ity that, for naturally occurring proteins, the folding might
occur through specific kinetic pathways, the reversibility of
the folding process provides a strong experimental support
for the Anfinsenian hypothesis. Indeed, unfolding/refolding
experiments directly indicate that, for several proteins, their
native state can be reached under a variety of initial condi-
tions by virtue of mere thermodynamic forces, i.e. without
the aid of any special cellular machinery. Several theoretical
studies have focused on the characterization of the folding
free energy landscape and in the way that it is explored by
proteins en route to the native state [4–11]. In this context,
one can hypothesize that, in principle, the knowledge of the
mere primary sequence should contain all the physico-chem-
ical information necessary to define the native structure of the
protein and possibly the molecular mechanisms leading to it
[1,2,12–14].

The Anfinsenian principle provides more than a
framework to rationalize the phenomenology of protein fold-
ing. In fact, the notion that the native state of a protein is
encoded entirely by its primary sequence provides the foun-
dations for the rapidly-growing number of computational ap-
proaches to protein folding [4,6,8,15–19]. While at present,
folding simulations are incapable of capturing kinetic pro-
cesses occurring beyond the time scale of 1µs (appropriate
for the folding of peptides of 20–30 residues), in perspective
they will play a paramount role in bridging the gap between
the number of known primary sequences (extracted from
genome-wide experiments) and of resolved protein structures
with the atomic resolution detail necessary for in depth bio-
chemical, medical and pharmaceutical applications.
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The scope of theoretical/computational approaches to
protein folding also encompasses the investigations of the
physico-chemical mechanisms which, by impairing the
formation of the native state (mis-folding) lead to the onset
of diseases. Molecular illnesses such as Alzheimer’s and Par-
kinson’s disease, Kreutzfeld–Jacob syndrome, bovine spong-
iform encephalopathy (BSE, or mad cow disease) share a
common cause represented by the aggregation of mis-folded
proteins or peptides [20]. Understanding the molecular basis
of folding and mis-folding thus acquires considerable impor-
tance in the design of drugs for the treatment of these ill-
nesses.

From a computational point of view, the folding prob-
lem has been approached from several perspectives and with
different methodologies. In the context of “structure predic-
tion”, a commonly employed philosophy is to adopt a series
of knowledge-based constraints and scoring functions to sin-
gle out the putative native configuration among a pool of
structures, possibly constructed from a representative reper-
toire of secondary and tertiary structures. These approaches
identify the configurations of favorable free energy by impor-
tance sampling techniques that ensures that stochastically
generated structures are drawn from the canonical distri-
bution. In general, however, their temporal succession will
not correspond to a legitimate kinetic trajectory. A realistic
dynamical folding perspective is instead arguably captured in
folding simulations where the dynamical evolution of a pro-
tein prepared in an unfolded state (typically a linear config-
uration) is followed by integrating the classical equations of
motion for each atom in the protein and surrounding solvent.
The large number of degrees of freedom of such systems lim-
its the time-span that can be simulated in an ordinary molecu-
lar dynamics set-up. For this reason, a useful complementary
approach is based on the use of simplified protein represen-
tations where each amino acid is represented by one or more
centroids which interact through effective contact potentials.
These simplified models, while lacking the chemical detail of
all-atom representations, are amenable to extensive charac-
terizations of both the folding kinetics and thermodynamics.
It is apparent that these strategies have different advanta-
ges and shortcomings and thus, with varying demands on
computer time, offer complementary insights on the folding
process.

Being aware that it is impossible to present a comprehen-
sive review of the various advancements made in this field, we
have attempted to illustrate a selection of the ideas and meth-
ods that have turned protein folding simulations into a pow-
erful tool for elucidating the pathways leading to the native
state and for structure prediction. We will first start from
methods employing simplified representations of polypep-
tide chains and then move to all-atom models of the protein
in either implicit or explicit solvents. Finally, we will present
our results on a combined use of coarse-grained Monte-Car-
lo (MC) searches and all-atom molecular dynamics (MD)
which, through the appropriate selection of the MD starting
configuration, allows to overcome some of the difficulties
which hamper the scope and effectiveness of ordinary all-
atom folding simulations.

2 Simplified protein models

Numerical simulations constitute a “virtual laboratory” where
the influence on protein folding by the various physico-chem-
ical determinants (hydrogen-bonding, hydrophobic effect and
side-chain packing) can be dissected and characterized. Those
aspects related to thermodynamic equilibrium can be cap-
tured only through an extensive canonical sampling of the
accessible conformations. All-atom approaches are unsuit-
able for this task since, at present, they allow a satisfactory
exploration of the free energy surface only of small peptides
[21–24].

One natural route to make the task numerically feasible
is to limit the phase space by reducing the conformational
degrees of freedom [25–28]. Typically this is accomplished
by replacing a given amino acid with one of more interac-
tion centers. In some limiting cases several residues have
been lumped together in a single interaction unit or, at the
other extreme, the atoms of the main chain have been treated
explicitly, while each side chain was represented with a sin-
gle centroid. Finally, examples have appeared which use all-
atom representation of the polypeptide and a simplified or
biased force-field coupled to a specific conformational search
scheme. It is not uncommon that the structural coarse-grain-
ing is accompanied by a discretization of the configurational
space. This may be accomplished either by limiting the dihe-
dral angles of the simplified backbone to take on a small
number of possible values [29] or by forcing the centroids to
lie on the nodes of a lattice.

The use of simplified protein models in folding simula-
tions has a relatively long tradition. One of the first nota-
ble examples is the seminal work of Warshel and Levitt
who proposed, three decades ago, to consider the interaction
among groups of atoms rather than detailed atom–atom inter-
actions and torsion variation to drive conformational transi-
tions. Their method was applied to simulate the folding of a
small pancreatic trypsin inhibitor [30] and then extended to
study the mainly α-helical protein carp myogen [31]. Since
this first pioneering application, many others have followed
taking also advantage of the rapidly-growing availability of
computing power.

In the following subsections we will survey the main
applications of lattice and off-lattice models of proteins and
their implications for the study of polypeptide systems.

2.1 Discrete and continuous protein models

Arguably the most schematic description of a polypeptide
chain is obtained by representing it as a self-avoiding walk
on a cubic lattice: each amino acid is put in correspondence
with a lattice site (consecutive amino acids occupying adja-
cent nodes of the lattice). Prior to their use in protein-related
contexts, the characterization of self-avoiding walks on hyp-
ercubic lattices was extensively used to elucidate the physics
of homopolymers in connection with the theory of critical
phenomena [32,33]. Owing to the chemical equivalence of
their constituent monomers, homopolymers are characterized
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by a huge degeneracy of the states having minimal energy.
On the other hand, one of the distinctive features of natu-
rally-occurring proteins is the uniqueness of the native state
conformation corresponding to the (free) energy minimum.
To reproduce this feature it is clearly necessary to go beyond
the homopolymer model by introducing at least two types of
amino acids and suitable parameters for their effective inter-
action. In the HP model of Chan and Dill [34], the two classes
of amino acids are taken to correspond to polar and hydro-
phobic residues. To mimic the segregation of hydrophobic
residues into a compact core avoiding interactions with the
solvent, an attractive contact energy was introduced among
hydrophobic residues. Despite its simplicity the HP model
has proved invaluable in clarifying several issues associated
to the “foldability” and designability of proteins.

In particular, concerning the issue of designability, both
numerical and theoretical studies have shown that only a
small fraction of the possible HP sequences admit a unique
conformation of minimal energy. In turn, only a small num-
ber of the possible lattice conformations can be the unique
ground state of some HP sequence. It therefore appears that,
even in such simplified models, the introduction of selec-
tion criteria such as the non-degeneracy of the native state,
introduces a drastic limitation on the number of viable se-
quences and structures. The systematic investigation of the
set of uniquely-encodable structures through analytical and
enumeration techniques has provided further insight into pro-
tein designability. In fact, a fraction of the viable structures
are the ground state of a large number of distinct protein se-
quences, consistent with the many-to-one correspondence of
primary sequences and structural families found in naturally-
occurring proteins. Interestingly, the set of highly-designable
structures is robust with respect to the changes of the interac-
tion potentials among the HP classes and even to the number
of classes used [35,36]. Indeed, the degree of designability
of a model protein structure has often been associated to its
geometrical properties, such as its symmetry or the number
of turns and strands [35,37,38]. This has allowed a transpar-
ent investigation of the selection criteria that through natural
evolution may have led to the surprisingly small number of
distinct protein folds observed in nature.

The investigation of structural designability within the
HP or related models typically relies on the characteriza-
tion of the equilibrium thermodynamics [39–46]. This min-
imal models have, however, been also used in connection
with the folding dynamics. The kinetic accessibility of both
highly- and poorly-designable structures has been the object
of several studies which aimed at clarifying not only how the
ruggedness of the free energy landscape affects the folding
kinetics but also the existence of a limited number of possible
routes leading to the native state [8,10,47–56].

Lattice models of proteins have therefore been very useful
in elucidating some general fundamental questions about pro-
teins and heteropolymers [57–59]. Their computational sim-
plicity has stimulated their applicability in more realistic and
challenging contexts, such as the simulation of the folding
process for naturally-occurring proteins. These approaches

are typically confronted with two issues. First, the need to
adopt a structural simplification yielding a satisfactory
compromise between having a limited number of degrees
of freedom and yet a faithful conformational representation.
Secondly, the difficulty and ambiguity of choosing a suitable
and transferable energy function for model. Several efforts
have been made for identifying the best physico-chemical
criteria for extracting reliable effective interaction potentials
among the amino acids [60–72]. While the potentials extrac-
tion problem is sometimes approached without reference to
any particular model, it is apparent that the determination
of the effective potentials will depend both on the form of
the employed energy function as well as the chosen struc-
tural representation for the model proteins. In such realistic
cases, the cubic lattice representation mentioned before is
rarely employed since it limits in a drastic and coarse man-
ner the angles formed by consecutive virtual backbone bonds.
A variety of discrete structural models have been introduced
that allow to capture more faithfully the actual distribution of
dihedral angles found in protein structures. In some instances,
the coarse-graining of the configurational space is achieved
through the discretization of the internal degrees of freedom
of the model proteins (e.g. in the 4-state model) [29]. In other
contexts, the amino acid centroids are constrained to occupy
the modes of lattices with suitable unit spacings and geome-
try. Not infrequently, more than one centroid is used for the
representation of amino acids. In these cases, the discretiza-
tion of the degrees of freedom is typically applied only to
one type of centroid, i.e. the Cα ones, while the positions of
the remaining ones, e.g. the side chains, can take on contin-
uous values (in particular they may be reconstructed through
deterministic procedures). A good example of this approach
is provided by the CABS (Cα , Cβ , Side group) model [73]
which adopts three interaction centers per amino acid: one
for the side chain center of mass, one for the Cβ and one
for the Cα centroid. The Cα values are constrained to lie on
a grid with lattice constant as fine as 0.61 Å. Though dis-
crete lattices always introduce the computational advantage
of enumerating a priori and storing all the possible configu-
rations of segments up to a given number of amino acids, it is
obvious that as the lattice spacing decreases, the distinction
between discrete and off-lattice models is blurred. In partic-
ular, Kolinski et al. [74] have developed a finely-discretised
lattice model that has been used with considerable success
for homology modeling as well as for structure prediction.

Simplified models employing a continuous representa-
tion of the coordinates of internal degrees of freedom of a
protein typically exploit the same ideas outlined above. In
particular, one or more centroids can be used for represent-
ing amino acids, and a suitable interaction potential among
them must be introduced. A well-known example is provided
by the united residues (UNRES) model of Scheraga and Liwo
where an amino acid is represented by two centers: one for
the main chain and the other for the side chain [75,76]. The
energy function governing the interaction of the centroids is
based on a many-body expansion and is extensively used as a
scoring function in structure prediction contexts. Within this
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scheme the simplified UNRES representation allows a good
exploration of the conformational space and has proved effec-
tive in the ab initio prediction of proteins of up to 75 residues
[75].

It is interesting to mention the introduction of models that
combine the description of some parts of the protein at the
atomic resolution level while others are captured with cent-
roids. This concept is illustrated by the Large-Cβ model of
Irback and coworkers which retain a heavy-atoms descrip-
tion of the protein backbone while a Cβ effective centroid is
used for the side chain [77]. All the peptide bond lengths,
angles and peptidic torsion angles are held fixed, leaving as
the only two variables the φ and ψ – Ramachandran tor-
sion angles. The interaction potential function is composed of
four terms keeping into account local interactions, excluded
volume effects, hydrogen bonding and hydrophobic interac-
tions. Also this type of model is amenable to very efficient
stochastic MC exploration of the phase space and appears to
reproduce satisfactorily the main thermodynamic features of
folding processes [78,79].

3 All-atom models of proteins

Though simplified models can satisfactorily elucidate sev-
eral questions concerning protein folding, they are obviously
incapable of capturing the rich variety of physical and chem-
ical behavior of proteins. Within a classical perspective, the
appropriate tool to capture the finer dynamical and thermo-
dynamical aspects is constituted by simulations based on
all-atom potentials. Though the time scale addressable by
this method is limited by its large computational cost, it has
proved useful in several important contexts. Examples in-
clude the detailed characterization of complete pathways, of
ensembles of structures in the unfolded and/or native states,
and, most importantly, the rational design of small molecules
as possible drugs able to interact with partially folded or mis-
folded conformations or the design of specific mutants with
particular (tailored) properties.

Folding simulations based on both MD and MC
approaches adopting all-atom force fields are being routinely
used. MD simulations are particularly appealing in this con-
text, as they represent the only computational method that can
provide a time-dependent analysis of a system in molecular
biology and, consequently, can be used to gain a complete
description of the folding mechanism of a protein. The study
of complete pathways by these means is however still com-
putationally very demanding and intensive for proteins of
more than 50–60 residues. In any case, folding simulations
have the potential to yield the native structure, the folding
pathways and the structures of the intermediates and tran-
sition states. From these data, important kinetic and ther-
modynamic information can be calculated. In contrast, most
structure prediction methods aim “only” at finding the native
structure, sometimes accompanied by a free energy estimate
of this state.

3.1 Extended MD simulations

The first major effort to simulate from first principles – the
folding process of a reasonably-sized protein – was under-
taken by Duan and Kollman [16]. In their seminal study of the
Villin Headpiece subdomain (36 residues) they started from a
completely extended conformation and followed the dynam-
ical evolution of the system for about 1µs using classical
molecular dynamics on parallel computers. The simulated
time-span was about two orders of magnitude longer than
the longest simulation reported at that time and still among
the longest MD simulations on real systems. The inspection
of the dynamical trajectory revealed a very rich behavior.
In particular, it was observed that the extended conforma-
tion underwent a rapid hydrophobic collapse accompanied
by helix formation. Notably, a marginally stable state was
detected, with a lifetime of 150 ns, and having a favorable sol-
vation free energy and significant resemblance to the native
state structure. During the whole trajectory the protein tended
to populate mainly compact states, as revealed by the near-
native values of the radius of gyration. The main-chain root
mean square deviation of all residues from the native state
varied between 0.45 and 1.2 nm while that of the core (resi-
dues 9–32) fluctuated between 0.3 and 0.88 nm. Up to 80%
of the native helical content and up to 62% of the native con-
tacts were observed. Interestingly, the solvation component
of the free energy (SFE) also reached levels comparable to
those of the native structure. The folding process appeared
to begin with a burst phase, characterized by a steady rise in
native helical content and in native contacts and the decrease
of the SFE, which lasted from the beginning of the simula-
tion to about 60 ns. The analysis of solvation energy terms
and the solvent accessible area indicated that the initial phase
was driven by the burial of hydrophobic surface. Therefore,
the initial phase closely represents the so called hydrophobic
collapse occurring on the same time scale as formation of
secondary structure.

The fact that the dynamical evolution of the initially-
extended Villin headpiece was not seen to proceed through
a steady build-up of native structure emphasizes the long
time scales required to capture the salient aspects of the
folding process. The computational requirements would be
even heavier if a reliable thermodynamic characterization is
sought. If this were to be accomplished with a single tra-
jectory, it would be necessary to consider a time-span long
enough to record several unfolding/refolding events [80]. By
these means one would achieve a reliable sampling of the
accessible phase space and thus address issues that are impor-
tant from both the conceptual and practical point of view. One
of these important aspects concerns the spatial characteriza-
tion of conformers representing the unfolded ensemble.

In this respect, it is interesting to mention a series of
studies undertaken by Daura et al. who focused on simple
short peptides capable to form secondary structures in iso-
lation [81–84]. The small size of the systems allowed a
reliable characterization of the properties in thermodynamic
equilibrium which, in turn compared well with NMR-based
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measurements. The typical peptides used for the studies
consisted of peptides of 3–10 residues designed to fold into
either helical or β-hairpin conformations (see [80] and ref-
erences therein). The results of MD simulations of each short
peptide at different temperatures and in various solvents
showed that the peptides could actually fold and unfold
multiple times, also starting from completely extended con-
formations. The use of multiple trajectories with different
temperatures, and the application of a suitable conforma-
tional clustering technique allowed to identify the family of
most populated native-like conformations and to identify the
transitions leading to this cluster from other non-native fami-
lies. Thanks to the observation of multiple folding–unfolding
events, the free energy differences between the folded and
unfolded ensembles could be computed and the melting tem-
perature for the peptides in the force field could be estimated.
The validation of these MD simulations was performed by
comparing calculated interatomic distances with experimen-
tal NOE restraints. This approach proved that even at 340 K,
in highly denaturing conditions, most of the NOE restraints
were not violated in the simulations, a fact that demonstrates
on the one hand the high conformational variability of short
peptide segments, and, on the other hand, that the denatured
states for those peptides is significantly less heterogeneous
than previously hypothesized. For example, for peptides with
about 20 rotatable bonds, the denatured state can be repre-
sented by only 100 conformers.

These conclusions are believed to apply also to the case
of proteins consisting of tens of residues, consistently with
recent experimental findings[85]. The existence of a limited
number of unfolded conformers may have profound impli-
cations for the folding process since it may imply that the
native state can be reached only through a limited number
of routes[80]. From a computational point of view it would
be most efficient to start the simulation not from the out-of-
equilibrium extended state but rather in correspondence of
one of the unfolded conformers populated in thermal equi-
librium. This is consistent with that observed in recent MD
simulations on β-hairpin structures, such as the B1 hairpin of
protein G and Betanova. The analysis of the simulated folding
trajectories revealed that the turn sequence was fundamen-
tal in determining the initial collapse of the strands from a
completely extended conformation towards a structure with
a high native-like character [86,87]. The establishment of
the correct juxtaposition of hydrophobic residues and in-reg-
ister hydrogen bonds between facing strands appeared to fol-
low the fast hydrophobic collapse leading towards the native
β-hairpin.

3.2 Distributed computing

We conclude this section by mentioning a novel approach
that has been adopted to characterize some overall features
of the folding/unfolding processes. Instead of using a small
number of long MD trajectories, Pande and coworkers [88,
89] have adopted the opposite perspective of dealing with a

very large number of weakly-coupled short simulations. The
approach lent itself very naturally to a distributed comput-
ing implementation which was indeed successfully used on
thousands of computers distributed worldwide. At present
this approach has been used to estimate the folding rate of
several fast-folding proteins, including α-helices, a β-hair-
pin, and a three-helix bundle protein from the Villin head-
piece [88,89].

Though the excessively short duration of the individual
simulated trajectories may introduce some difficulties in the
effective use of the distributed computing approach [90], the
latter has been used to characterize putative unfolded ensem-
bles and their role in steering a correct rapid folding. Using
a supercluster of over 10,000 processors, almost 800µs of
MD simulation were performed with atomistic detail of the
folded and unfolded states of three polypeptides from a range
of structural classes. A comparison between the folded and
the unfolded ensembles revealed that, even though virtually
none of the individual members of the unfolded ensemble
was found to exhibit native-like features, the mean unfolded
structure (averaged over the entire unfolded ensemble) had a
native-like geometry [91]. This finding is consistent with the
above-mentioned investigations of Daura et al. [81–84] and
Shortle [85]. The latter group, in fact, observed through NMR
measurements of residual dipolar coupling that a native-like
spatial positioning and orientation of chain segments per-
sisted to concentrations of at least 8 M urea [85]. These data
were used to demonstrate that long-range ordering can occur
well before a folding protein attains a compact conformation.

4 Combining coarse-grained and all-atom methods

Several experimental and theoretical observations on the con-
formational properties of peptides and proteins suggest that,
despite a seemingly random organization [92], the unfolded
ensemble contains structures with a residual native organi-
zation [85,93,94]. It would be physically appealing to use
these structures as starting points for the MD folding simula-
tions. This would also affect the computational efficiency of
the simulation. In fact, when starting from a fully-extended
configuration a significant time is spent in relaxing the system
from this out-of-equilibrium situation. The resulting
slow-down is particularly severe for simulations where the
solvent is treated explicitly, since a very large number of sol-
vent molecules needs to be considered due to the large size
of the simulation box. The computational advantage over ex-
tended initial configurations would be even more conspicu-
ous if one could start from structures picked from the tran-
sition state ensemble. In this case all-atom dynamics would
progress towards the native ensemble in a time scale much
shorter than the typical protein folding time. The difficulty
in pursuing this strategy lies in the determination of the tran-
sition state ensemble, which ought to be done in an unbiased
way, i.e. with the sole input of the primary sequence. In the
following we shall discuss how the accomplishment of this
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Fig. 1 Average energy and radius of gyration as a function of temperature for the coarse-grained model evolution of the 36 residue Villin headpiece
domain. The “cooperative” like transition corresponding to the formation of secondary structures is evident in the two graphs [95]

difficult task may be attempted with the aid of simplified
protein models.

The coarse-grained models reviewed in the previous sec-
tions have been shown to allow a vast and efficient exploration
of the conformational space, vastly larger than in all-atom
MD. However, the limitations of both the structural represen-
tations and of the energy functions prevent reproducing the
finer features of the folding process. At the opposite extreme
of resolution, all-atom simulations, based e.g. on MD, are
unable to cross high energy barriers and allow an exhaus-
tive exploration of the phase space. However they can bring
into the system much of the atomic detail necessary for the
high resolution structural and dynamical studies of primary
interest to the biochemical community.

These observations led us to suggest a new approach
which combines a coarse-grained MC search of viable start-
ing configurations for a subsequent all–atom MD simulations
in explicit solvent [95,96]. The effect of the coarse-grained
part is to simplify the energy landscape of the protein to iden-
tify efficiently physically meaningful starting conformations
for the subsequent MD. Explicit solvent MD is then used
to reintroduce the fine chemical details which are ultimately
responsible for driving the evolution towards the native state.
The link between the two structural representations is a fine-
graining algorithm which allows to reconstruct reliably the
full atomic detail of the protein using a library of previously
generated protein fragments. The details of the reconstruction
procedure are provided in [95,96].

The test system chosen for this study was the same as con-
sidered by Duan and Kollman and other investigators [16,

89,97–99], namely the Villin headpiece, HP36 (1VII.pdb).
The preliminary coarse-grained MC exploration of the free
energy landscape is achieved by describing the protein in
terms of its Cα trace and of effective Cβ centroids, building
upon the lessons learned from the papers cited in paragraph
2. This is accompanied by a simplification of the energy
function which incorporates effective pairwise interactions
among amino acids (KGS potentials) [63], knowledge-based
constraints for backbone chirality, local propensities to form
secondary motifs, and a term favoring their tertiary pack-
ing. [95,96]. The relative weight of the potential energy terms
was chosen so that, on a set of short proteins (unrelated to
the Villin headpiece), the build up of secondary structure
occurred at the collapse temperature, T c. Within this sim-
plified framework, the thermodynamics of HP36 was char-
acterized by several MC evolutions at distinct temperatures.
The MC dynamics entailed the use of pivot and crankshaft
moves which preserve the length of the bonds, initially set
to 3.8 Å, joining consecutive Cα centroids. As temperature
is decreased, the model protein undergoes a collapse, as sig-
naled by the rapid decrease of both the radius of gyration,
Rg, and the average system energy. The peak in the spe-
cific heat in correspondence of the collapse temperature, T c,
is further associated with significant fluctuations in energy
reflecting the coexistence of rather swollen and globular con-
formations (see Fig. 1). Consistently with the relative strength
of the potential terms in the model Hamiltonian, the latter
ones typically possess local secondary elements and are fur-
ther compactified at lower temperatures. The protein at T c
is thus poised to collapse into compact conformations with
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non-trivial secondary content. Thus, the structures encoun-
tered in the MC trajectory at T c represent attractive can-
didates for all-atom MD evolution for several reasons: (1)
secondary elements are typically formed, (2) the structures
are not unnaturally compact and (3) the conformational var-
iability is such that significantly different structures can be
picked (the average RMSD between any pair of structures
sampled at T c being 5.9±1.2 Å). If the free energy landscape
of the coarse-grained model at Tc retained the relevant fea-
tures of the “true” one at the folding temperature, one would
expect that representatives of the transition ensemble would
be found among the sampled model structures. The dynami-
cal evolution of these configurations should, on average, pro-
gress towards the native basin much more rapidly than start-
ing from unfolded (or extended) conformations. Simplified
structural models are manifestly unable to capture the delicate
chemical interplay which sculpts the free energy landscape
governing a folding process (for otherwise they would be
routinely used for determining the native state of any given
sequence!). However, it has been argued that the bottleneck
of the folding process is constituted by the formation of a
few crucial contacts which, by establishing the correct over-
all native topology, predispose the harmonious formation of
the remaining native interactions [17,18]. The generation of
structures capturing the main traits of native topology, is a
much simpler task than predicting the native state and is

within reach of simplified protein models [74]. This fact pro-
vided the motivation for the present attempt to extend the
scope of ordinary MD simulations by using simple physico-
chemical criteria to identify the starting conformations.

Seven different uncorrelated coarse-grained conforma-
tions were thus chosen at T c. Each of them was used, after
the fine-graining, as an input for a subsequent all-atom MD
evolution of 50 ns at 300 K and in explicit water. The general
Gromos96 force field, with the SPC water model and PME
treatment of electrostatics were used. For the sake of brev-
ity we shall discuss the main features that emerged out of
the seven simulations, (indicated as F1, F2, . . . , F7); a more
detailed account can be found in [95]. Trajectory F1 starts
from a rather open configuration, the gyration radius being
Rg ≈12 Å, and with partially formed helices in regions H2
and H3 (cf. Fig. 2). After a short equilibration time, it under-
goes a rapid compaction as shown by the fast decrease in Rg
values. Not only is this collapse rapid (10 ns), but the initial
helical segments grow to the full native extension of H2 and
H3 while also achieving their correct tertiary packing. The
core RMSD with respect to the minimized average NMR
structure often attains values as low as 2.8 Å and stabilizes
around a mean value of 3.0 Å (cf. Fig. 2). This result con-
stitutes a significant advancement over the pioneering study
of Duan and Kollman where the representative structure of
their 1µs-long simulation was found to be at 4 and 5.7 Å
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Fig. 3 Time evolution of radius of gyration (top) and core-RMSD (bottom) of HP36 in runs F3, F4 and F7. The RMSD was calculated against
the average minimized NMR structure of HP36

Fig. 4 Secondary structure time evolution for simulations F1, F3, F4 and F7. The DSSP criterion is used to define secondary structure motifs
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Fig. 5 Time evolution of radius of gyration (top) and core-RMSD (middle) of HP36 in three different runs starting from the fully-extended state.
Bottom typical time evolution of the secondary content during simulations starting from the extended conformation

RMSD from the NMR reference for the core and the whole
protein respectively. The advantage of our approach, which
overall involved a fraction of the time-span simulated is that
valuable insight about the folding dynamics can be obtained
by the analysis and comparison of the evolution of the vari-
ous starting structures. The significant secondary content and
organization found in all starting structures resulted in inter-
esting dynamical evolutions that, even when not progressing
towards the folded state, convey valuable information on the
folding process, as e.g. the trapping mechanism associated
with the formation of contacting strands. In one remarkable
case, run F3, analysis of the secondary structure content re-
veals that helices H1, H2 and H3 are correctly formed (see
Figs. 3, 4). However, within the simulated time span the tra-
jectory does not approach the native conformation since the
RMSD from the native state stabilizes around 6 Å. The sec-
ondary elements, while formed in the correct native helical
regions, assemble in a non-native geometry mainly due to
the formation of a stable hydrophobic core involving Phe11,
Leu21, Trp24 and Leu29. Run F4 also presents an interest-
ing behavior since the starting structure possesses an accept-
able native similarity (the core RMSD being about 4.5 Å)
and a good helical content in regions H1 and H3 (see Fig. 4).
This initially promising similarity is gradually eroded in a
few nanoseconds of dynamical evolution, eventually leading
to negligible native content. Interestingly, the loss of native
content is paralleled by the formation of a turn conformation

involving residues 8–10 and the pairing of β-like structures
involving residues 2–7 and 10–15. The tendency to form β-
sheets is also observed in the other four trajectories, where no
native progress is recorded (the average RMSD being 6 Å)
and that persistently display contacting extended segments
organized in an overall compact structure. Clearly these in-
sights into the events that impair the progress towards the
native state may give important clues about the presence of
intermediates that may twarth trajectories away from the na-
tive basin. It is important to point out that among the 7 runs,
the one having the lowest internal energy is the one reaching
the native basin, F1, Eint = −1109 KJ/mol. All other runs
have energies in the range [−1078, −1021] KJ/mol, while the
native state has energy −1094 KJ/mol. Besides the internal
energy, other free energy estimators can be used to discrim-
inate the trajectory approaching the native basin from the
others [100].

As a term of comparison, we have carried out three MD
runs starting from extended conformations. Due to the much
larger number of water molecules present in the simulation
cells that accommodate the starting configurations, the total
simulation time needed to evolve the three structures over
20 ns was about equal to the one used for runs F1–F7. The
behavior of these runs is summarized in Fig. 5. As seen from
the graphs, between 5 and 10 ns a chain collapse occurs. The
resulting structures, despite possessing native-like values of
Rg have very poor secondary content (and hence native simi-
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Fig. 6 Time evolution of RMSD (top) from the average NMR structure and of the secondary structure content (Bottom) for the Trp-Zipper
β-hairpin

larity too). The further evolution of these compact and disor-
dered structures is very slow at 300 K. These features contrast
with the build up of secondary and tertiary structure observed
with the same computational investment, among the trajecto-
ries F1–F7. This comparison provides a clear illustration of
the advantages of the hybrid MC–MD approach. The fact that
the energy-function of the coarse-grained model is simple
and not tuned for the Villin headpiece testifies to the general
feasibility of employing simplified models to identify via-
ble starting configurations for the MD evolution. Though it
is tempting to speculate that some of the structures sampled
at Tc are related to the transition state ensemble, our lim-
ited number of runs does not allow to establish this with the
desired statistical confidence. We have however, applied the
same hybrid MC–MD methodology to study β-hairpins and
all-β-proteins with promising results: RMSD of 0.6 Å of the
best predicted with respect to the native structure for a 13 res-
idue long β-hairpin forming peptide as shown in Fig. 6 (Trp-
zipper, 1leo). In this case, thanks to the limited dimensions
of the hairpin, simulations could be run up to 100 ns starting
from seven MC structures selected at the T c. Starting all-
atom MD from completely extended conformations yields
a minimum RMSD value of 3 Å, but with a computational

expense which is about three times bigger than in the case of
the mixed MC–MD approach.

The results obtained from these studies show that the
combined approach, MC–MD approach, can provide valu-
able insight into the details of folding and mis-folding mech-
anisms and, particularly about the delicate influence of local
and non-local interactions in steering the folding process.

5 Conclusions and perspectives

In this account, we presented the basics of protein simula-
tion methodology, and we highlighted different approaches
that have been used to tackle the protein folding problem.
Several examples were given highlighting the effectiveness
of simplified models in capturing the basic thermodynamics,
kinetics and structural features of different protein systems.
We also discussed the great potential held by all-atom MD
simulations in describing the details of folding pathways.
With continuing advances in the methodologies and in com-
puter power, all of these studies will be steadily extended to
more complex and larger systems.
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In this respect, the combination of simplified models and
all-atom methodologies can provide many fundamental in-
sights concerning several mechanisms of protein systems.
Coarse-grained methods can be used to overcome the slower
and time-consuming steps in the process creating suitable
starting points for all-atom studies. The “time advancement”
can be exploited to bring the real fine chemical detail only
into the most significant selected structures, resulting in a net
saving of computer time (less brute force) and allowing a
higher degree of transparency and control in the analysis of
the process.

We think that this philosophy can be successfully ex-
tended to the study of other important topics of modern
molecular biology. The detailed structural characterization
of the ensemble of conformations available to “intrinsically
disordered proteins” can shed light on the presence of second-
ary structure content of particular regions, on the presence of
possible long range contacts, on the degree of presence (or
absence) and flexibility of tertiary structural organization.
This information can be linked to NMR derived data in the
effort to characterize the structure–activity relationships of
this emerging important class of proteins. Another funda-
mental aspect of post-genomics biology is the understand-
ing and characterization of protein–protein interactions and
interaction networks. The nature of the intermolecular forces
involved in the formation of complexes is the same as the na-
ture of intramolecular forces involved in the folding of single
molecules. Based on this, one could try to model a simpli-
fied intermolecular recognition pathway, treating the binding
partners at a coarse-grained level with the same potentials
as we have described above. Selected complexes can sub-
sequently be projected into the all-atom world to allow the
characterization of their structures and of possible molecular
motions involved in the recognition process.

The involvement of complex formation and of intrinsi-
cally disordered proteins in regulatory and signaling path-
ways represent a cornerstone of modern biology and even
nanotechnology. The structural and dynamical characteriza-
tion is the main step towards the deep understanding of these
biological mechanisms. For these aspects, the insight that can
be offered by NMR technology, X-ray crystallography and
other techniques is, despite the continuous advancements,
still limited. In these contexts there appears to be ample scope
for theoretical and numerical contributions. Methods com-
bining simplified and all-atom protein descriptions appear to
possess many of the characteristics necessary to tackle these
issues with a contained computational investment and yet
retaining the relevant chemical details.
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